Research ArticleHigher Neural Functions and Behavior

Slow-paced inspiration regularizes alpha phase dynamics in the human brain

Published Online:https://doi.org/10.1152/jn.00624.2019

The phase of low-frequency, rhythmic cortical activity is essential for organizing brain processes because it provides a recurrent temporal frame for information coding. However, the low-frequency cortical phase exhibits great flexibility in response to external influences. Given that brain rhythms have been found to track respiratory inputs, we hypothesized that slow breathing, commonly associated with mental regulation, could reorganize the relationship between these two rhythmic systems through the adjustment of the cortical phase to such a slow train of inputs. Based on simultaneous magnetoencephalography and respiratory measurements, we report that while participants performed paced breathing, slow relative to normal breathing modulated cortical phase activity in the alpha range across widespread brain areas. Such modulation effects were specifically locked to the middle of the inspiration stage and exhibited a well-structured pattern. At the single-subject level, the phase angles underlying the effects became more likely to be diametrically opposed across breaths, indicating unique and consistent phase adjustment to slow inspiratory inputs. Neither cardiac fluctuations nor breathing-unrelated task effects could account for the findings. We suggest that slow-paced inspiration could organize the cortical phase in a regularized phase pattern, revealing a rhythmic but dynamic neural network integrated with different neurophysiological systems through volitional control.

NEW & NOTEWORTHY Breathing is more complicated than a simple gas exchange, as it is integrated with numerous cognitive and emotional functions. Controlled slow breathing has often been used to regulate mental processes. This magnetoencephalography study demonstrates that slow-paced relative to normal-paced inspiration could organize the timing of alpha rhythmic activities across breathing cycles in a structured manner over widespread brain areas. Our results reveal how a volitionally controlled change in respiratory behavior could systematically modulate cortical activity.

REFERENCES

  • Angelone A, Coulter NA Jr. Respiratory sinus arrhythmia: a frequency dependent phenomenon. J Appl Physiol 19: 479–482, 1964. doi:10.1152/jappl.1964.19.3.479.
    LinkISIGoogle Scholar
  • Arsenault M, Ladouceur A, Lehmann A, Rainville P, Piché M. Pain modulation induced by respiration: phase and frequency effects. Neuroscience 252: 501–511, 2013. doi:10.1016/j.neuroscience.2013.07.048.
    CrossrefPubMedISIGoogle Scholar
  • Aru J, Aru J, Priesemann V, Wibral M, Lana L, Pipa G, Singer W, Vicente R. Untangling cross-frequency coupling in neuroscience. Curr Opin Neurobiol 31: 51–61, 2015. doi:10.1016/j.conb.2014.08.002.
    CrossrefPubMedISIGoogle Scholar
  • Bardouille T, Ross B. MEG imaging of sensorimotor areas using inter-trial coherence in vibrotactile steady-state responses. Neuroimage 42: 323–331, 2008. doi:10.1016/j.neuroimage.2008.04.176.
    CrossrefPubMedISIGoogle Scholar
  • Barrett KE, Barman SM, Boitano S, Brooks H. Ganong’s Review of Medical Physiology. New York: McGraw-Hill Medical, 2010.
    Google Scholar
  • Boiten FA, Frijda NH, Wientjes CJE. Emotions and respiratory patterns: review and critical analysis. Int J Psychophysiol 17: 103–128, 1994. doi:10.1016/0167-8760(94)90027-2.
    CrossrefPubMedISIGoogle Scholar
  • Chou EP, Hsu SM. Cosine similarity as a sample size-free measure to quantify phase clustering within a single neurophysiological signal. J Neurosci Methods 295: 111–120, 2018. doi:10.1016/j.jneumeth.2017.12.007.
    CrossrefPubMedISIGoogle Scholar
  • Corcoran AW, Pezzulo G, Hohwy J. Commentary: Respiration-entrained brain rhythms are global but often overlooked. Front Syst Neurosci 12: 25, 2018. doi:10.3389/fnsys.2018.00025.
    CrossrefPubMedISIGoogle Scholar
  • Critchley HD, Garfinkel SN. The influence of physiological signals on cognition. Curr Opin Behav Sci 19: 13–18, 2018. doi:10.1016/j.cobeha.2017.08.014.
    CrossrefISIGoogle Scholar
  • Del Negro CA, Funk GD, Feldman JL. Breathing matters. Nat Rev Neurosci 19: 351–367, 2018. doi:10.1038/s41583-018-0003-6.
    CrossrefPubMedISIGoogle Scholar
  • Fink A, Grabner RH, Neuper C, Neubauer AC. EEG alpha band dissociation with increasing task demands. Brain Res Cogn Brain Res 24: 252–259, 2005. doi:10.1016/j.cogbrainres.2005.02.002.
    CrossrefPubMedGoogle Scholar
  • Flexman JE, Demaree RG, Simpson DD. Respiratory phase and visual signal-detection. Percept Psychophys 16: 337–339, 1974. doi:10.3758/BF03203952.
    CrossrefGoogle Scholar
  • Heck DH, McAfee SS, Liu Y, Babajani-Feremi A, Rezaie R, Freeman WJ, Wheless JW, Papanicolaou AC, Ruszinkó M, Sokolov Y, Kozma R. Breathing as a fundamental rhythm of brain function. Front Neural Circuits 10: 115, 2017. doi:10.3389/fncir.2016.00115.
    CrossrefPubMedISIGoogle Scholar
  • Herrero JL, Khuvis S, Yeagle E, Cerf M, Mehta AD. Breathing above the brain stem: volitional control and attentional modulation in humans. J Neurophysiol 119: 145–159, 2018. doi:10.1152/jn.00551.2017.
    LinkISIGoogle Scholar
  • Homma I, Masaoka Y. Breathing rhythms and emotions. Exp Physiol 93: 1011–1021, 2008. doi:10.1113/expphysiol.2008.042424.
    CrossrefPubMedISIGoogle Scholar
  • Ito J, Roy S, Liu Y, Cao Y, Fletcher M, Lu L, Boughter JD, Grün S, Heck DH. Whisker barrel cortex delta oscillations and gamma power in the awake mouse are linked to respiration. Nat Commun 5: 3572, 2014. doi:10.1038/ncomms4572.
    CrossrefPubMedISIGoogle Scholar
  • Jensen O, Gelfand J, Kounios J, Lisman JE. Oscillations in the alpha band (9-12 Hz) increase with memory load during retention in a short-term memory task. Cereb Cortex 12: 877–882, 2002. doi:10.1093/cercor/12.8.877.
    CrossrefPubMedISIGoogle Scholar
  • Kreibig SD. Autonomic nervous system activity in emotion: a review. Biol Psychol 84: 394–421, 2010. doi:10.1016/j.biopsycho.2010.03.010.
    CrossrefPubMedISIGoogle Scholar
  • Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE. Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320: 110–113, 2008. doi:10.1126/science.1154735.
    CrossrefPubMedISIGoogle Scholar
  • Lehrer PM, Gevirtz R. Heart rate variability biofeedback: how and why does it work? Front Psychol 5: 756, 2014. doi:10.3389/fpsyg.2014.00756.
    CrossrefPubMedISIGoogle Scholar
  • Lorig TS. The respiratory system. In: Handbook of Psychophysiology, edited by Cacioppo JT, Tassinary LG, Berntson GG. Cambridge, UK: Cambridge University Press, 2007, p. 231–243.
    CrossrefGoogle Scholar
  • Luo H, Poeppel D. Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron 54: 1001–1010, 2007. doi:10.1016/j.neuron.2007.06.004.
    CrossrefPubMedISIGoogle Scholar
  • Lutz A, Greischar LL, Rawlings NB, Ricard M, Davidson RJ. Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. Proc Natl Acad Sci USA 101: 16369–16373, 2004. doi:10.1073/pnas.0407401101.
    CrossrefPubMedISIGoogle Scholar
  • Mahjoory K, Cesnaite E, Hohlefeld FU, Villringer A, Nikulin VV. Power and temporal dynamics of alpha oscillations at rest differentiate cognitive performance involving sustained and phasic cognitive control. Neuroimage 188: 135–144, 2019. doi:10.1016/j.neuroimage.2018.12.001.
    CrossrefPubMedISIGoogle Scholar
  • Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011: 156869, 2011. doi:10.1155/2011/156869.
    CrossrefPubMedISIGoogle Scholar
  • Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Trans Biomed Eng BME-32: 230–236, 1985. doi:10.1109/TBME.1985.325532.
    CrossrefPubMedISIGoogle Scholar
  • Park HD, Bernasconi F, Salomon R, Tallon-Baudry C, Spinelli L, Seeck M, Schaller K, Blanke O. Neural sources and underlying mechanisms of neural responses to heartbeats, and their role in bodily self-consciousness: an intracranial EEG study. Cereb Cortex 28: 2351–2364, 2018. doi:10.1093/cercor/bhx136.
    CrossrefPubMedISIGoogle Scholar
  • Paul NA, Stanton SJ, Greeson JM, Smoski MJ, Wang L. Psychological and neural mechanisms of trait mindfulness in reducing depression vulnerability. Soc Cogn Affect Neurosci 8: 56–64, 2013. doi:10.1093/scan/nss070.
    CrossrefPubMedISIGoogle Scholar
  • Perl O, Ravia A, Rubinson M, Eisen A, Soroka T, Mor N, Secundo L, Sobel N. Human non-olfactory cognition phase-locked with inhalation. Nat Hum Behav 3: 501–512, 2019. doi:10.1038/s41562-019-0556-z.
    CrossrefPubMedISIGoogle Scholar
  • Radaelli A, Raco R, Perfetti P, Viola A, Azzellino A, Signorini MG, Ferrari AU. Effects of slow, controlled breathing on baroreceptor control of heart rate and blood pressure in healthy men. J Hypertens 22: 1361–1370, 2004. doi:10.1097/01.hjh.0000125446.28861.51.
    CrossrefPubMedISIGoogle Scholar
  • Sauseng P, Klimesch W. What does phase information of oscillatory brain activity tell us about cognitive processes? Neurosci Biobehav Rev 32: 1001–1013, 2008. doi:10.1016/j.neubiorev.2008.03.014.
    CrossrefPubMedISIGoogle Scholar
  • Spaak E, de Lange FP, Jensen O. Local entrainment of α oscillations by visual stimuli causes cyclic modulation of perception. J Neurosci 34: 3536–3544, 2014. doi:10.1523/JNEUROSCI.4385-13.2014.
    CrossrefPubMedISIGoogle Scholar
  • Stefanics G, Hangya B, Hernádi I, Winkler I, Lakatos P, Ulbert I. Phase entrainment of human delta oscillations can mediate the effects of expectation on reaction speed. J Neurosci 30: 13578–13585, 2010. doi:10.1523/JNEUROSCI.0703-10.2010.
    CrossrefPubMedISIGoogle Scholar
  • Tallon-Baudry C, Bertrand O, Delpuech C, Pernier J. Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. J Neurosci 16: 4240–4249, 1996. doi:10.1523/JNEUROSCI.16-13-04240.1996.
    CrossrefPubMedISIGoogle Scholar
  • Thut G, Miniussi C, Gross J. The functional importance of rhythmic activity in the brain. Curr Biol 22: R658–R663, 2012. doi:10.1016/j.cub.2012.06.061.
    CrossrefPubMedISIGoogle Scholar
  • Tort ABL, Brankačk J, Draguhn A. Respiration-entrained brain rhythms are global but often overlooked. Trends Neurosci 41: 186–197, 2018. doi:10.1016/j.tins.2018.01.007.
    CrossrefPubMedISIGoogle Scholar
  • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15: 273–289, 2002. doi:10.1006/nimg.2001.0978.
    CrossrefPubMedISIGoogle Scholar
  • van Diepen RM, Mazaheri A. The caveats of observing inter-trial phase-coherence in cognitive neuroscience. Sci Rep 8: 2990, 2018. doi:10.1038/s41598-018-20423-z.
    CrossrefPubMedISIGoogle Scholar
  • VanRullen R. Perceptual cycles. Trends Cogn Sci 20: 723–735, 2016. doi:10.1016/j.tics.2016.07.006.
    CrossrefPubMedISIGoogle Scholar
  • Varela F, Lachaux JP, Rodriguez E, Martinerie J. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2: 229–239, 2001. doi:10.1038/35067550.
    CrossrefPubMedISIGoogle Scholar
  • Varga S, Heck DH. Rhythms of the body, rhythms of the brain: respiration, neural oscillations, and embodied cognition. Conscious Cogn 56: 77–90, 2017. doi:10.1016/j.concog.2017.09.008.
    CrossrefPubMedISIGoogle Scholar
  • Voloh B, Womelsdorf T. A role of phase-resetting in coordinating large scale neural networks during attention and goal-directed behavior. Front Syst Neurosci 10: 18, 2016. doi:10.3389/fnsys.2016.00018.
    CrossrefPubMedISIGoogle Scholar
  • Wutz A, Weisz N, Braun C, Melcher D. Temporal windows in visual processing: “prestimulus brain state” and “poststimulus phase reset” segregate visual transients on different temporal scales. J Neurosci 34: 1554–1565, 2014. doi:10.1523/JNEUROSCI.3187-13.2014.
    CrossrefPubMedISIGoogle Scholar
  • Zeidan F, Johnson SK, Diamond BJ, David Z, Goolkasian P. Mindfulness meditation improves cognition: evidence of brief mental training. Conscious Cogn 19: 597–605, 2010. doi:10.1016/j.concog.2010.03.014.
    CrossrefPubMedISIGoogle Scholar
  • Zelano C, Jiang H, Zhou G, Arora N, Schuele S, Rosenow J, Gottfried JA. Nasal respiration entrains human limbic oscillations and modulates cognitive function. J Neurosci 36: 12448–12467, 2016. doi:10.1523/JNEUROSCI.2586-16.2016.
    CrossrefPubMedISIGoogle Scholar