- Membership & Community
-
Publications & News
- Physiology Journals
-
Newsroom
-
The Physiologist Magazine
- 2019
- 2020
- 2021
- 2022
- 2023
- 2024
-
In Depth
- In Depth—The Bear Necessities
- In Depth: Understanding Circadian Rhythms
- In Depth: Understanding Data
- In Depth: Exercise Physiology: Take Your Medicine at the Gym
- In Depth: Neurodegenerative Disorders
- Imaging Methods Unveil the Invisible
- Rewiring the Brain: Breakthroughs in Neural Therapy
- What’s Coming Next for GLP-1 and Metabolic Disease Treatment
- Understanding the Effects of Maternal Exercise
-
Mentoring Forum
- Net Worth
- Take Care
- You … In Charge
- Work. It. Out.
- Working Off-site
- Location, Location, Location?
- Student Support
- Progressing to Postdoc
- Relationship Building
- Let’s Get It Started
- What Do We Value?
- It’s a Postdoc Life
- Coronavirus Contributions
- Creative Communications
- Selection Process
- Conference Connections
- Postdoc Appreciation
- Research Rewards
- Focus on Teaching
- Industry Insights
- Balance Beam
- Post Postdoc
- If You Build It
- Talk It Through
- Forward Bound
- I’ve Earned My PhD. Now What?
- University Life
- Tips for Trainees
- Time Travel
- Prepare Now for the Career You Want
- Landing a Postdoctoral Researcher Position
- Becoming a Physician-Scientist
- Mastering the Art of Science Communication
- Setting Yourself Up for Success in the Lab
- From Postdoc to Professor: Key Strategies for Success
- How to Stay Motivated in Challenging Times
- Staying Motivated Throughout Your Career
-
Policy IQ
- Policy IQ—2023 in Review: How APS Advocated on Behalf of Physiologists
- Policy IQ—Supporting Equitable Research
- NIH's Road Map to a Better Postdoc Experience
- The Career Path to Science Advocacy
- Culture of Safety: Stopping Sexual Misconduct
- Physiologists Return to Capitol Hill
- Tips for Scientists to Communicate about Animal Research
- Science Advocacy in a New Political Landscape
- Tips for Making the Call to Congress
- Science Spending Is an Investment
-
Publish with Polish
- Publish with Polish
- The Layers of Open Science
- Take Your Content From Meeting to Manuscript
- APS Journals to Highlight Women’s Health Research
- What Subscribe to Open Means for APS Members
- The 5 Pillars of Publish with Purpose
- 3 Types of Metadata Researchers Should Know About
- Navigating Open Access and New Licensing Options
- Journal Manuscript Prep Made Easy
- How to Navigate Public Access Requirements
- Under the Microscope
- Mentoring Q&A
- Evolution
- Baseline by Scott Steen, CAE, FASAE
- 2025
- Find Us on Social Media
-
The Physiologist Magazine
-
Professional Development
-
Meetings & Events
-
American Physiology Summit
- #APS2024 Overview
- Abstracts
- Awards at the Summit
- Award Lectures
- Career Networking Lunch Form
- Dates and Deadlines
- Advocate for Health Research Funding
- Hotel Information
- Information for International Travelers
- Industry Partners
- Keynote Speaker—James Rothman, PhD
- Keynote Speaker—George Brooks, PhD, FAPS
- Keynote Speaker—Holly Ingraham, PhD
- Mobile App
- NIH and NSF Program Officer Panel Discussion Form
- Physical Poster Information
- PhysioHub
- Pre-Summit Events
- Registration
- Section & Group Banquet Tickets
- Social Events
- Speaker Audiovisual Instructions
- Summit FAQs
- Summit Newsroom
- Travel & Transportation
- Undergraduate Program Book
- Liability Waiver
- Industry Partners
- 2026 American Physiology Summit
- Joseph Erlanger: Pioneering Nerve Research and APS Leadership
- 2023
- 2024
- Scientific Integrity Policy
- Exhibitor Registration Form
- New Trends in Sex Differences and Women’s Health Research
- Control of Renal Function in Health and Disease 2026
- Comparative Physiology Conference 2026
- Webinars
- Related Meetings
- Future APS Conferences
- Conference Policies
-
American Physiology Summit
- APS Awards
-
Career & Professional Development
-
Career Gateway
-
Resources
- Transcript—Leading Through Conflict and Difficult Conversations
- Transcript—Managing Conflict with Colleagues
- Transcript—Leading a Team Through Conflict
- Transcript—Providing Difficult Feedback
- Transcript—Team Dynamics and Culture Primer
- Transcript—Building a Team
- Transcript—Leading a Team Assigned to You
- Transcript—Creating a Team Culture
-
Resources
- Career Navigator
- Center for Physiology Education
- Virtual Courses
- Physiology Job Board
- APS Graduate Physiology & Biomedical Science Catalog
-
Career Gateway
-
Meetings & Events
-
Advocacy & Resources
- Policy Areas
-
Resources
- Researcher Resources
- Educator Resources
- Trainee Resources
- Student Resources
-
APS Graduate Physiology & Biomedical Science Catalog
- Des Moines University
- George Washington University
- Mayo Clinic Graduate School of Biomedical Sciences—Biomedical Engineering & Physiology
- Michigan State University
- New York Medical College
- Nova Southeastern University
- Pennsylvania State University
- Texas A&M University
- Texas A&M University Medical Physiology
- Stony Brook University
- The University of Iowa
- University of Alabama at Birmingham
- University at Buffalo
- University of Colorado
- University of Michigan
- University of Minnesota
- University of Missouri-Biomedical Sciences
- University of Nebraska Medical Center
- University of Nevada, Reno
- University of South Carolina School of Medicine
- University of Tennessee Health Science Center (UTHSC)
- University of Texas Health Science Center
- Virginia Commonwealth University
- Wayne State University
- Physiology Department Catalog Submission Form
- Boston University
- Women's Health Research Initiative
- Career Gateway
- Advocate for Science
- About APS
Rockville, Md. (July 1, 2020)—A new study finds antibiotic exposure during crucial developmental periods in early childhood alters digestive tract nerve function and bacterial colonies. The study is published in the American Journal of Physiology-Gastrointestinal and Liver Physiology. It was chosen as an APSselect article for July.
The gastrointestinal tract contains the largest community of bacteria and other microorganisms in the body (gut microbiome), as well as an extensive network called the enteric nervous system. Together, the gut microbiome and the enteric nervous system control digestion, gut movement, fluid exchange and blood flow to the digestive system. The enteric nervous system and gut microbiome continue to develop after birth and into the first months of life, in part due to the transition to solid food that occurs during this time.
Research has shown that antibiotics affect gut microbiota by changing the populations of different bacteria. Antibiotic use in early life, particularly in premature infants, has been tied to increased risk of developing metabolic disease, obesity and allergies. In a new study, researchers explored the effects of antibiotic exposure on the gut microbiome and the enteric nervous system as it related to age.
The research team studied two groups of mice—one was newborn (neonatal) and the other was recently weaned—that were exposed to the antibiotic vancomycin. Vancomycin is used to treat a wide variety of bacterial infections, including inflammation of the intestines (colitis). The treated mice were compared with age-matched controls.
Vancomycin treatment induced dysbiosis in both treated groups of mice. Dysbiosis is defined as an alteration in the gut microbiome that can lead to disease. But the antibiotic had different effects on microbiota composition of the two age groups. This is in part due to the significant maturation of microbiota between the neonatal and weaning periods.
The weaned mice exposed to antibiotics had changes to the nerve cells in the enteric nervous system and slower colonic migrating motor complex patterns. These patterns of electrical activity prompt the muscles of the colon to propel stomach contents through the digestive tract. Intestinal transit time is linked to gut microbiota composition and diversity, and slow transit time is often a cause of constipation.
The study’s results support the idea that “antibiotics administered during critical developmental windows have greater consequences on host physiology than antibiotic exposure during maturity,” the researchers wrote. Changes in communication between the microbiota and the enteric nervous system that arise from early-life antibiotic treatment could have lasting effects on gastrointestinal function.
Read the full article, “Antibiotic exposure postweaning disrupts the neurochemistry and function of enteric neurons mediating colonic motor activity,” published in the American Journal of Physiology-Gastrointestinal and Liver Physiology. It is highlighted as one of this month’s “best of the best” as part of the American Physiological Society’s APSselect program. Read all of this month’s selected research articles.
NOTE TO JOURNALISTS: To schedule an interview with a member of the research team, please contact the APS Communications Office or call 301.634.7314. Find more research highlights in our News Room.
Physiology is the study of how molecules, cells, tissues and organs function in health and disease. Established in 1887, the American Physiological Society (APS) was the first U.S. society in the biomedical sciences field. The Society represents 9,000 members and publishes 16 peer-reviewed journals with a worldwide readership.
Related Content
- Endurance Exercise without Weight Loss May Reduce Body Fat
- THC Exposure before Birth May Impair Infant Lung Development and Function
- Living with Anxiety? Regular Sleep May Be Especially Important for Heart Health
- Vital Sign Accuracy May Depend on Body Position, Research Suggests
- Hypertension Disrupts Natural Blood Pressure ‘Dipping’ Rhythm in Both Sexes
- Scott Steen to Retire as CEO of the American Physiological Society
- Feeling Constipated? You May Have a Higher Risk for Heart Disease
Contact Us
Journalists may contact APS Communications to:
- Interview an expert
- Request a copy of a study
- Get physiology background and resources
Email: communications@physiology.org or call 301.634.7314.